A HIGHLY EFFICIENT RADICAL CLOCK AS A PROBE OF THE MECHANISM OF SULFONE HALOGENATION BY PERHALOALKANES

Bernard Vacher, André Samat, Michel Chanon.

Laboratoire de Chimie Inorganique Moléculaire.U.A.126 CNRS

Université de Droit, d'Economie et des Sciences d'Aix-Marseille

Rue Henri Poincaré-13397-MARSEILLE CEDEX 13, FRANCE

Summary: Halogenation of (endo)-5-(2-i-propylsulfonyl)-2-norbornene $\underline{5}$, a new highly efficient radical probe, shows that if an SET mechanism was occurring in the $\underline{4}$ -halogenation of sulfones by perhaloalkanes, it would have to involve a reaction step in which a C-centered radical reacts with CX $\frac{7}{4}$ at a rate greater than 10^{10} s⁻¹.

The reaction of sulfones with perhaloalkanes (CX_4) in basic media provides efficient access to \mathbf{d} -halosulfonyl compounds 1 . Detailed mechanistic understanding remains elusive in these reactions

both an S_N^2 -type mechanism with X-end attack or monoelectron transfer from the carbanion to the perhaloalkane have been proposed. In a recent article we attempted to trap the proposed free radical intermediate 1b using (2-allyloxy)ethylphenylsulfone as the radical probe

 $\text{K'=C}_6\text{H}_5$, $\text{R''=CH}_2\text{OCH}_2\text{CH=CH}_2$. We concluded in that study that no radical intermediate with a life time $> 10^{-6}\text{s}$ was involved in the reaction path leading to halogenation. We describe here results obtained with an even faster radical probe. The present probe has a semi-rigid structure which favours intramolecular cyclization.

E.C.Ashby 4 recently described a new kind of free radical clock with a cyclization rate on the order of 10^7s^{-1} . With that report in mind we synthetized (endo)-5-cyano-5-(2-i-propylsulfonyl)-2 norbornene 5 from the Diels-Alder reaction 5 between cyclopentadiene and 1-cyano-1-i-propylthio ethylene 6 followed by oxydation of the sulfide to the sulfone. The dienophilic compound was obtained in two steps from i-propylthiol and 2-chloroacrylonitrile 7 (scheme 1). The pure

$$iPrSII + C=CII_{2} \xrightarrow{CH_{3}ONa} CI CHCH_{2}S iPr \xrightarrow{DMF. \Delta} iPrS C=CII_{2}$$

$$CN \qquad CN \qquad CN \qquad 3$$

$$3 + A \xrightarrow{(100\$)} CN \xrightarrow{CH_{2}CI_{2}} (68\$)$$

$$SiPr \qquad 4 \xrightarrow{-60°C} SO_{2}iPr \qquad 5$$

$$(exo:endo=23:77)$$

(endo)-sulfone $\underline{5}$ is obtained by recrystallization from hexane-ether 8 . Halogenation of this compound leads, in practically quantitative yields, to the chloro (CCl $_4$,C $_2$ Cl $_6$) or bromo (CBr $_4$, CBrCl $_3$) compounds ($\underline{6a}$ and $\underline{6b}$). In none of these halogenation reactions did we observe the cyclization product $\underline{8}$ (< 1% by HPLC and GPC) 9 . The cyclization product was unambigously prepared by reducing the chloro derivative $\underline{6a}$ with tri-n-butyltin hydride using AIBN as initiator 10

(scheme II). Using a 6a/hydride ratio of 1:2.5, the cyclization product 8 is obtained in

scheme II : Reaction of $\underline{6}$ with Bu₃SnH and AIBN(1% M) at 65°C in C₆H₆. (i) Experiments 1, 2, 3 refer respectively to nBu₃SnH / $\underline{6}$ ratios of: 2.5, 10 and 50. (ii) yields determined by HPLC analysis (Si 60, 7_P m column, CHCl₃ as eluent).

quantitative yield. When increasing quantities of tri-n-butyltin hydride are employed, the yield of the reduction compound 5 increases, as expected. This increase in the yield of 5 (scheme II) allows an estimation of the cyclization rate for the radical 7 as being greater than $10^8 \, \text{s}^{-1}$. To our knowledge, this is presently the fastest radical clock based on intramolecular cyclization. 12

These experiments demonstrate that if an e.t. mechanism is involved in the reaction between α -sulfonyl carbanions and polyhaloalkanes, k_2 must be greater than approximatively $10^{10} \, \mathrm{s}^{-1}$.

$$R'SO_2\bar{C}HR' + CX_4 + CX_4 + CX_3\bar{C}HR' \cdot CX_4^{\top}$$
 R'SO₂CHXR' + CX₃"

Thus, we must conclude that either S_H^2 on X in radical anions are abnormally fast or that the displacement on X involving \measuredangle -sulfonyl carbanion involves an S_N^2 -type transition state. We are presently performing theoretical calculations and spectroscopic experiments to more firmly establish this point.

Acknowledgment. We wish to thank Dr.L.Stella and J.L.Boucher for their help.

References and notes

1)Meyers,C.Y."Topics in Organic Sulfur Chemistry"; Tislev, M., Ed.; University Press: Ljubljana, Yugoslavia, 1978, p.207-260. 2)Zefirov, N.S.; Makhon'kov,D.I. Chem. Rev. 1982,82,615-624. Foucaud,A."The Chemistry of Functional Groups",Supplement D;S.Patai,Z. Rappoport, Ed.J. Wiley Ltd New York,1983;Chapter 2,p.462-478. 3)Vacher,B.;Samat,A.;Chanon,M. Tetrahedron Lett. (submitted for publication). 4)Ashby,E.C.; Pham,T.N. Tetrahedron Lett. 1984,25,4333-4336. 5)Sauer,J. Angew. Chem. Int. Ed. Engl. 1966,6,16-33. 6)Boucher,J.L.; Stella,L. to be published.

7)Gundermann,K.D.; Schulze,J. Chem. Ber.1961,94,3254. 8) (endo)5: m.p.:67-68°C. C₁₁H₁₅NO₂S. Anal. Calc. C: 58.64; H: 6.71; N: 6.22; S:14.23. Found C:58.57; H: 6.83; N: 6.19; S: 14.22

9) 8: m.p. 138-139°C. C₁₁H₁₅NO₂S. Anal. Calc. C: 58.64; H: 6.71; N: 6.22; S: 14.29. Found C: 58.68 H: 6.69; N: 6.21; S: 14.3. 10)Beckwith,A.L.J.; Eastone,C.J.; Serelis,A.K. Aust. J. Chem. 1983,36, 545-556. 11)Carlsson,D.J.; Ingold,K.U. J. Am. Chem. Soc. 1968,90,1055. 12) Griller,D.; Ingold,K.U. Acc. Chem. Res. 1980,13,317-323.